
Zen of Palm

Designing Products for Palm OS®

CONTRIBUTORS

Revised by Mark Dugger
Illustrated by John Grimes
Contributions by Monty Boyer, John Cardozo, Gina Clark, Bob Ebert, David Fedor, Roger Flores, Rob Hai-
tani, Jeff Hawkins, Michael Lunsford, Michael Mace, Jean Ostrem, Lon Poole, Chris Raff, Maurice Sharp,
Phillip Shoemaker, Joe Sipher, and Carl Stone.

Copyright © 1996 - 2003, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may
be printed and copied solely for use in developing products for Palm OS® software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

PalmSource, the PalmSource logo, AnyDay, EventClub, Graffiti, HandFAX, HandMAIL, HandSTAMP,
HandWEB, HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm
trade dress, Palm Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove,
PalmModem, PalmPak, PalmPix, PalmPoint, PalmPower, PalmPrint, Palm.Net, Simply Palm, ThinAir, and
WeSync are trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be
trademarks or registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

L

Zen of Palm
Document Number 3100-002-HW
June 13, 2003
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmsource.com
http://www.palmos.com/dev/support/docs/

Zen of Palm iii

Table of Contents
 Introduction v

Additional Resources vi

1 The Path to Enlightenment 1
Design Philosophies . 3

The Essence of PCs 4
The Essence of Handhelds 4
Inverse Usage Patterns 7
Different Design Approaches 7
Solution to Riddle #1 8

Design Practices . 10
A Balance of Features 10
Nirvana: The Sweet Spot 13
Pragmatic Innovation 14
Determining the Need 15
The 80/20 Rule . 17
Scaling the Problems 18
Sharing the Work. 19
Solutions—not Features 20
Intuitive . 21
Easy to Remember 22
Example: Train Catcher 23
Solution to Riddle #2 25

Design Validation. 27
Validating Design Quality 28
Basic User Testing 28
What You Find. 30
Solution to Riddle #3 32

Design Improvements 33
Stretching the Sweet Spot 34
Discovering New Features. 35
Solution to Riddle #4 36

Summary: The Zen Approach 38

iv Zen of Palm

Zen of Palm v

Introduction
Palm, Inc. is the leader and standard bearer in the handheld market.
Building on the experiments and near misses of predecessors, Palm
introduced the first handheld device to achieve resounding success
in the marketplace. Several years later, we at PalmSource, the
software spin-off of Palm, Inc., continue to produce the operating
system that runs on the best handhelds in the world.

We also proudly develop, upgrade, and distribute the premier
operating system for handheld devices. The Palm OS® is the
platform for a whole family of Palm-Powered™ products, including
many fine devices from other companies that license the Palm OS.
With a market share of 80%, the Palm OS platform is the first choice
of any developer who wishes to reach the widest customer base of
handheld owners in the world.

If you are a developer interested in writing applications for the Palm
OS platform, you should be aware of the diversity of Palm-Powered
devices that make up this market. They start, of course, with the
Personal Digital Assistants that help customers organize their
personal data, including address book, datebook, to do list, and
notes. Wireless devices are the newest frontier, combining the
advantages of a PDA plus wireless connectivity to E-mail and the
internet. Wireless products include the Palm™ VII series and smart
phones. Beyond these more familiar devices, there are successful
products like the inventory readers with scanner attachments from
Symbol and scientific and medical instruments that use the Palm
OS.

PalmSource, Inc. achieved this unrivalled level of adoption by
developing design philosophies and practices that enable the
creation of breakthrough products. From the beginning, our design
has been guided by utility, portability, and focus. These principles
are an essential part of the culture, not just a catchy bit of
differentiation.

And they apply equally to hardware and software. In fact, at
PalmSource we try to integrate the two so completely that users

Introduction
Additional Resources

vi Zen of Palm

don’t even need to think about the difference. If you are a developer,
your applications can blend in seamlessly with the Palm OS
platform. To achieve this integration, start with same design
philosophies and methods we use at PalmSource.

At first, you may find the principles a little unfamiliar, especially if
you have been developing for PCs or laptops. But that makes sense.
After all, a handheld is not a PC! By designing the PalmSource way,
you will learn to develop applications for a new and exciting kind of
electronic device. The challenges and rewards will be new, too. You
are entering the world of handhelds.

Additional Resources
• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Zen of Palm 1

1
The Path to
Enlightenment
The design philosophies and practices developed at PalmSource,
Inc. target a specific kind of computing instrument—the handheld
device. Handhelds include personal digital organizers, wireless
communicators, smart phones, medical and scientific instruments,
inventory trackers, and a host of other devices. The universe of
Palm Powered™ handheld products, though varied, is unified by
three principles:

• Palm OS® solutions are user-centric.

• Palm Powered™ handhelds can be used anywhere, anytime.

• Palm OS applications have a very specific focus.

First is the user-centric nature of Palm OS solutions. Handhelds and
the applications they run must be immediately usable and
completely convenient. Customers buy a handheld because they
need to solve a pressing problem. They do not purchase one from
some vague sense that they need a computer. Likewise, Palm OS
applications must adhere to the usability and convenience
customers have come to expect.

Next, Palm OS solutions must be available anywhere, anytime. The
handheld customer requires computing power in places that PCs
and laptops cannot conveniently go. If the effort to stuff features
into a handheld goes unchecked, the device may become too heavy
or bulky to be carried around easily. By definition, a handheld has to
fit in the hand—and a human hand, at that.

Finally, a handheld application has a sharply defined “sense of
purpose.” Tightly focused on a particular task of importance to the
user, it is the right tool for the job. The specificity of Palm OS
applications follows from the nature of a handheld device. Unlike
generic computing machines, handhelds are specially-designed
devices used in very specific ways. To understand the difference,

The Path to Enlightenment

2 Zen of Palm

imagine you have a wool suit that is badly wrinkled. You could use
a steam roller to iron it, but you would be better off with a steam
iron. Focus is the name of the game. The Palm OS platform is not the
realm of large, vaguely-defined, monolithic applications.

Design philosophies and practices in the world of personal
computers are very different from the Palm OS design philosophies
and practices. This booklet explains why they’re different and how
they’re different so that you can create successful Palm OS
applications.

Rather than jump right into the nuts and bolts of the Palm OS user
interface—placement of buttons and icons and so forth—we’ll take
a step upward and survey a 10,000 ft. view of Palm OS design
philosophies and practices. This design overview will explore the
following four topics:

• Design Philosophies

• Design Practices

• Design Validation

• Design Improvements

Because designing for the Palm OS platform may involve new
concepts and ways of thinking, we are going to examine these topics
through the means of several riddles. In the manner of a Zen koan,
the answer may overturn the conventional view and expand your
understanding. With due apologies to all Zen masters and students,
we hope that the paradoxes wrapped in these riddles will provide at
least a little enlightenment about application design in the handheld
world. Each riddle introduces a section of this booklet, and you may
choose to contemplate the paradox while reading the discussion. If
you prefer, you may simply read the main text of the section, which
fully elucidates the topic. Feel free to skip the riddle and the cartoon
(though you may find it hard not to peek).

The Path to Enlightenment
Design Philosophies

Zen of Palm 3

Design Philosophies
To discover the essence of the Palm OS design philosophy, ponder
the first riddle.

Riddle #1 Q: How can a gorilla learn to fly?

Hint: You must understand the essence of the gorilla.

Think about the inherent differences between a gorilla and an eagle.
Because of their essential natures, the gorilla rules the jungle and the
eagle rules the sky. Now think about the intrinsic differences
between handhelds and personal computers (PCs).

A handheld is not just a little desktop or laptop PC. A handheld is
something else. This is a fundamental lesson that is not so easy to
comprehend. Of course you can spot some obvious differences, such
as size, but there are implications and usage patterns that are more
difficult to discern yet are vitally important when you design for
handhelds.

©
 2000 JO

H
N

 G
R

IM
E

S
 john@

grim
escartoons.com

The Path to Enlightenment
Design Philosophies

4 Zen of Palm

The Essence of PCs
In the PC world there is a linear relationship between features and
value. More features are always better. Steve Ballmer, Microsoft
Corp. President and CEO, put it this way, “Software should get
bigger every year.” 1

In PCs, more
features are

better

This is the essence of PC thinking: it’s always better to have more
features. The customer will be able to do more tasks and, not
coincidentally, will have to upgrade hardware and software to get
those benefits.

Lost in this formula is the user experience. Lost are the questions:
More features for what purpose? What does the user really want to
do most with his computer? How long does it take to learn to use,
and how hard is it to remember, once learned? Does the computer
become a tool for a job, or an alternate experience of its own, in
which productivity and utility are forgotten?

In the relationship between features and user experience, a PC is
like an sports utility vehicle (SUV). An SUV is large and can carry a
lot of people and things. You can add heavy accessories to it without
much of a penalty. For instance, you can add a ski rack on the roof, a
bicycle carrier on the back, and a minibar in the backseat. If you
were going on a camping trip, you could even store a week’s worth
of provisions in the rear compartment. In a pinch, you could even
set up a small cot and sleep in it! None of these add-ons is a real
liability. In all, bigger is better, and more gets you more.

Likewise, in the PC world, more features are better. New circuitry
may soak up more electricity, but you are not likely to notice the
increase. New components may add weight to the PC, but again, it’s
no big deal.

The Essence of Handhelds
A handheld is a different creature: it is like a sports car. An SUV is
fine until you need to race in the Indy 500 or escape the bad guys in

1. Steve Ballmer, “Building a Platform on Web’s Technology,” interview by Karlin
Lillington, San Jose Mercury News, 17 December 1999, Business section, morning
final edition.)

The Path to Enlightenment
Design Philosophies

Zen of Palm 5

a high-speed chase. A sports car doesn’t have time for extras that
will weigh it down. It has to be maniacally focussed on speed and
maneuverability.

Handhelds
excel at

perceived
speed.

A handheld must be quick to use. A handheld is like a sports car
because it gets the user from one place to another quickly. The actual
technical specifications of a handheld are of little real interest to the
user. What matters is how quickly she can reach for the device, open
it, find the appropriate information, and proceed with her other
tasks. How long this interaction takes can be described as perceived
speed. It is a measure of the user’s subjective experience with the
handheld. The user doesn’t care how fast the wheels are spinning, if
the car is elevated on a rack. People use handhelds to do things--
now!

Too many
features
frustrate

customers.

A necessary precondition of perceived speed is an uncluttered and
essential set of features. It’s fine to sell someone a knife that has 56
different uses, but if the user can’t find the main blade or the bottle
opener without flipping dozens of identical-looking levers, the knife
is a novelty, not a tool. Likewise, a handheld application has to offer
what the user needs to do and offer it in a way that’s quick to learn
and easy to use.

A handheld
must be free to

roam about.

Furthermore, handhelds take on features at a cost. Some hardware
features may sound cutting-edge on the marketing brochure, but
could increase power consumption enough to seriously degrade
battery life. If one of the requirements of the handheld device was to
operate without a recharge or new batteries for several days at a
time, then the handheld’s designers have lost focus. An unfocused
and undisciplined loading of features makes the handheld bigger
and heavier, leading to a spiral of doom, as shown in Figure 1.1.

The Path to Enlightenment
Design Philosophies

6 Zen of Palm

Figure 1.1 More can be less

Handhelds
must be

wearable

Handhelds must be more than just portable. Handhelds must be so
small and light that a person can carry one everywhere, in a pocket
or a purse, without even thinking about it. If the device is a burden
to carry, it will get left behind and not used. Ideally, it is like a
clothing accessory that the user can “wear.” PCs—even laptop
PCs—don’t have the same portability or power constraints as
handhelds.

Handhelds are
about the user

All this means one thing: there is a point of diminishing returns
when adding features to a handheld. Adding too much degrades
the user experience, as shown in Figure 1.2. And the user
experience, not a list of features, is what a handheld is all about.

Figure 1.2 Feature list vs. user experience

Slower performance

Faster processor

More
memory

Shorter battery life

More
features

Bigger
batteries

Bigger handheld

Higher
cost

Frustrated
customers

More Features

B
et

te
r

U
se

r
E

xp
er

ie
nc

e

PC world

More Features

B
et

te
r

U
se

r
E

xp
er

ie
nc

e

Handheld world

The Path to Enlightenment
Design Philosophies

Zen of Palm 7

Inverse Usage Patterns
Usage patterns also differ fundamentally between handhelds and
PCs. People tend to sit down at a desktop or laptop PC for a few
long sessions, using the keyboard, large screen, and hard disk to
create and edit large amounts of information. For example, a user
opens a word processor or spreadsheet and works for half an hour.

Handhelds are
used frequently

but briefly

People generally use handhelds in frequent, short bursts—more like
a watch than a PC. They take a handheld out of their pocket or
briefcase to review and update small chunks of information. For
example, they look up a phone number or quickly check their
schedule. Figure 1.3 graphically contrasts how frequently and how
long people use handhelds and laptop PCs.

In fact, the usage patterns of handhelds are exactly opposite those of
PCs. Therefore, taking similar approaches to product design is a
fundamental mistake.

Figure 1.3 Opposite usage patterns

Different Design Approaches
When designing for handhelds, you need to take a different
approach than when designing for PCs. Trying to fit a full desktop
application in the palm of your hand is the worst mistake you can
make. It will ultimately lead to failure.

Handheld

Accesses per day

Laptop PC

Average session time (minutes)

15

10

5

0

20

15

10

5

0
Handheld Laptop PC

Source: Palm, Inc. user surveys.

The Path to Enlightenment
Design Philosophies

8 Zen of Palm

PC Approach

In the PC world, users demand and expect to be able to do many
kinds of complex activities. The PC is a tool for doing everything
and anything. As a result, applications are typically stuffed with
features. They try to cover as many contingencies as possible. In this
world where there are few trade-offs for adding functionality, the
more features you can give to customers, the better.

Handheld Approach

The practicalities of the handheld world call for a different design
approach. Rather than brute force, you have to focus on clever
solutions. Hone in on what really matters. A handheld application
that is overstuffed with features actually fails its users. You must
carefully consider what’s important to put in and what’s important
to leave out. You will find this approach more challenging, but the
sleek, usable handheld application that results will be worth your
effort.

Power is the
ability to get
the job done

Don’t misunderstand us: customers of Palm-Powered products do
want power! But the power they seek is the ability to get the job
done. If more features and functions makes a product cumbersome
to use, they don’t provide any real power.

If a few well-chosen features enable you to get the job done, you’ve
created an application that is actually more powerful than a feature-
heavy one that obscures the user’s primary goals. Remember that
utility and convenience equal power.

Solution to Riddle #1
Now we’re ready to answer the first riddle. We understand the
essential difference between PCs and handhelds. We know that
when you add feature after feature to a handheld, you reach a point
of diminishing returns and customer frustration. We know that
people use handhelds and PCs differently—a few long sessions with
a PC and many short sessions with a handheld. In these short
sessions, too many features make a handheld cumbersome. On
handhelds, the most straightforward designs are the most powerful.

The Path to Enlightenment
Design Philosophies

Zen of Palm 9

Q: How can a gorilla learn to fly?

A: Only by becoming an eagle.

Learning to fly means learning to think like an aerodynamic
creature—one that takes off, ascends, swoops, glides, and lands. It
means leaving transportation of coconuts to the gorilla.

If you want to soar like an eagle and design successful products for
the Palm OS platform, you must be willing to set aside instincts,
knowledge, and experience that you acquired designing PC
products.

A note of encouragement: Once you learn to design successful
handheld applications, you will find pleasure in whittling down a
vaguely-defined, feature-riddled PC application and making it fly
on the handheld. You will learn that although the eagle might covet
the gorilla’s massive strength and long arms, if it had these features
it could not get off the ground.

©
 2000 JO

H
N

 G
R

IM
E

S
 john@

grim
escartoons.com

The Path to Enlightenment
Design Practices

10 Zen of Palm

Design Practices
Now that we’ve established our philosophy, let’s take a look at
design practices. We will consider a more obscure and strange
riddle.

Riddle #2 Q: How do you fit a mountain in a teacup?

Hint: Why put a mountain in a teacup?

You will not solve the second riddle or design a successful handheld
product if you are still in the more-is-better PC mindset. Less-is-
more thinking means taking a step back to ask what matters. Let’s
explore what matters in Palm OS applications.

A Balance of Features
Palm’s first product was successful because it struck a balance
among the following key qualities:

• Pocket size

• Fast response

• Easy to use

• Low cost and high value

• Worry-free battery life

©
 2000 JO

H
N

 G
R

IM
E

S
 john@

grim
escartoons.com

The Path to Enlightenment
Design Practices

Zen of Palm 11

• Seamless connection with PCs

All of these qualities are important individually, but Palm scored by
integrating them all in a balanced way. Before Palm, excellence in
one characteristic tended to rob the product in other characteristics.
For example, data-bank organizers are tiny, fast, cheap, and have
long battery life—but are so hard to use that they end up in drawers.
The Newton and Magic Cap products were easier to use but were
too big, cost too much, and devoured batteries. Palm OS products
must incorporate all of the qualities listed above.

It’s worth noting that the original Palm Powered device did not
incorporate all of the key qualities by chance. These were the design
goals that were laid out in advance: It must be small enough to be
unconsciously portable. It had to be fast and easy to figure out. It
must connect quickly to a PC. It’s batteries must last a long time. It
must meet customer price points.

Focus on
benefits to

users

The list of key qualities emphasizes benefits to users, not the
underlying technical features that produce the benefits. PC product
development typically proceeds from the opposite direction. The
starting point is a checklist of technical features that sound
impressive: 500MHz, 128MB, 12GB, and so on. The actual benefits
users get from these features aren’t always so clear.

Palm OS products succeed not on the sheer size of their technical
features, but on the merits of their user benefits. Table 1.1 shows the
relationships between the key user benefits of Palm OS products
and the technical attributes that produced those benefits in the
original Palm Powered handheld.

The Path to Enlightenment
Design Practices

12 Zen of Palm

Table 1.1 User needs determine technical attributes

User
benefit

Enabling technical attributes of first Palm
Powered handheld

Pocket size • Small display
• High level of hardware integration
• Small software footprint
• Compact data structures

Fast and
easy

• Compact, task-oriented software
• Software has low overhead, low

abstraction, and low modularity
• One application runs at a time
• Data stored in a low-overhead database in

RAM
• Graffiti® power writing
• Minimal synchronization time

Low cost
and high
value

• Inexpensive components
• Small RAM and ROM sizes1

• Minimal hardware expansion
• Secondary storage omitted from original

product; support added in later models.1

1. Current Palm Powered handhelds have expansion slots and serial ports.

Worry-free
battery life

• Static/pseudo-static RAM
• Small RAM and ROM sizes1

• Automatic shut-off
• Secondary storage support omitted from

original product; added in later models
after battery life issues were solved.1

Seamless
connection
with PCs

• Integrated, cooperative synchronization
between handheld and PC applications

• Common data manager design for easy
application tracking of changes and low
handheld processing during
synchronization

• Customized conduits synchronize all kinds
of data during a single session

• Synchronize via serial or USB connection

The Path to Enlightenment
Design Practices

Zen of Palm 13

Nirvana: The Sweet Spot
When designing applications for handhelds, you must carefully
determine which features to add and which ones to leave out. Recall
from the earlier discussion about the essence of handhelds that
including too many features in a handheld product degrades the
user experience. For instance, too many features in an application
can clutter the relatively small screen with lots of buttons and icons
and such.

Balance
features with

the user
experience

Your product needs enough features for the optimal user experience
and no more. You may even have to omit some interesting features
for the sake of a better overall user experience. The sweet spot at
which you achieve an optimal balance of features and user
experience appears at the apex of the curve in a graph of features vs.
user experience, as shown in Figure 1.4.

Figure 1.4 Different views on new features

Determining an optimal set of features is like finding diamonds in a
mountain. You don’t want the whole mountain, just the important
chunks.

The graph in Figure 1.4 also provides a reminder of the difference
between PC thinking and handheld thinking. PC thinkers look only
at the features axis. They neglect the question of whether the user
benefits from these features and whether new features make the
product too complicated to use.

Handheld thinkers look at the overall curve. They see that piling on
features in the style of in the PC style would move Palm OS
products lower on the user-experience axis. When PC thinkers

More Features

B
et

te
r

U
se

r
E

xp
er

ie
nc

e

Pocket PC/Windows CE Products

Palm OS Products

Sweet Spot

The Path to Enlightenment
Design Practices

14 Zen of Palm

recommend rushing along the features axis to make a product seem
better, handheld thinkers know this could make the product worse.

In the early days, critics said to Palm: “You guys are idiots for not
matching PC features. Customers want more features no matter
what. And they’re going to decide to buy based on a check list of
features.” Palm product designers did their testing, held their
ground, and brought out a product that people—ordinary people—
could use from the first day and every day thereafter.

This conviction and leap of faith paid off. The Palm OS platform
now commands 80% of the handheld market. PalmSource licensees
market a host of useful and popular products based on these
underlying principles.

Added features
must improve

the user
experience

Handheld thinking is about balancing available technology and
utility. When faced with the possibility of a new feature, ask two
questions:

• What do we gain in user satisfaction?

• What does it cost in terms of user confusion and hardware
resources?

Let’s consider an example. A proposal to add a menu bar that’s
always visible should be vetoed reflexively, because the handheld
screen is too small. But how about displaying the menu bar
whenever the user taps the application’s title tab? This
improvement, part of the Palm OS since version 3.5, has no negative
effect on the novice user, but adds flexibility for the power user. It
also costs nothing in hardware resources.

Pragmatic Innovation
Achieving an optimal balance of features and convenience—that is,
focusing on what matters—is the core of the Palm OS design
philosophy. An ability to focus on what matters and provide a
practical solution is what you need to create successful Palm OS
products. One approach is the following:

• Identify the problems

• Find the simplest solution to each problem

• Get rid of everything else.

The Path to Enlightenment
Design Practices

Zen of Palm 15

Innovate to
make

technology
really useful

This is the approach taken by the team that created the original
Palm Powered handheld device, and can be summarized by the
phrase “pragmatic innovation.” This vital part of the Palm OS
culture simply means: do not use technology for technology’s sake.
Instead, try innovating. Make technology really useful. Limit
yourself to a mature technology or to one that you can make work
efficiently.

For example, Graffiti writing was the first form of handwriting
recognition that was actually practical. A compelling technology
such as handwriting recognition that is implemented poorly is
useless and even destructive. You need to apply a new technology
in a way that will satisfy the customer. If you can’t, the technology
(or your implementation of it) isn’t ready yet.

Determining the Need
You get pragmatic innovation started by identifying the problems
that your handheld product needs to solve. Determine what the
users of your product need to do.

To accomplish this, you must sometimes question what customers
ask for! This doesn’t mean to overrule the customer. It does mean
that you may have to refine your questions. Return to your
representative users with prototypes that realize the trade-offs
implicit in what they originally asked for. Given technological
limitations, propose alternate solutions and see how the users react.
It is your job to meet the user’s need—today, using available
technology, innovating wherever possible, but with on eye on the
clock. The customer is waiting.

Find the real
problems

behind what
customers ask

for

For example, when Graffiti writing was developed, customers were
asking for natural handwriting recognition. But natural
handwriting recognition required a much faster processor and
plenty of memory, which together required bigger batteries. Adding
all these things to a handheld would have weighed it down and
made it cost too much for the market.

Instead, the designers recognized that the real problem was how to
enter text. This problem could be solved without natural
recognition. They solved the text entry problem with a simple
writing method that works efficiently yet is fast, accurate, easy to

The Path to Enlightenment
Design Practices

16 Zen of Palm

use, and doesn’t take too long to learn. In addition, Palm OS
applications were designed to require minimal handwriting. Other
input methods that require only tapping were more efficient than
any kind of handwriting recognition.

Similarly, when Palm developed its first handheld, customers asked
for two-way wireless e-mail built-in. The technology available at the
time would have significantly increased the cost and size of the
handheld, pushing it right out of the sweet spot. Palm decided that
this problem could be solved by developing seamless connection to
a PC. Time and money went into streamlining and perfecting the
synchronization process. The result was one-button
synchronization.

In both cases, the solution was one appropriate to the moment. As
time passed, PalmSource and the Palm Economy (that is, our
licensees and our third-party developers) came up with even better
solutions. Consider the case of Graffiti. First, a third party released a
software alternative to Graffiti. Then came a hardware solution—the
foldable keyboards. Most recent of all, are the mini “thumb”
keyboards that snap into the serial port. Consider the case of two-
way wireless e-mail. The first response came from a hardware
manufacturer who produced a snap-on wireless modem for the
Palm III. In 1999, Palm, Inc. introduced a handheld with wireless
connectivity built in, the Palm VII. PalmSource continued to
support Palm Powered modems by releasing the MIK (Mobile
Internet Kit).

Answer the needs of the customer today. Then you or someone else
in the Palm Economy can circle back and invent an even more
sophisticated answer later.

Don’t be afraid
to respond to

an answer with
more

questions.

The trouble with listening to customers too literally is that they do
not always understand the limitations and consequences of the
technologies they ask for. They don’t realize that getting exactly
what they ask for can be quite unpleasant.

If you’re developing a custom application for a company that
plunks down a huge checklist of features, go down the list feature
by feature and find out why each one is there. Understand what the
customer actually needs to do. Come up with appropriate and
efficient solutions. Then present them to the customer.

The Path to Enlightenment
Design Practices

Zen of Palm 17

Ignore
conventional

wisdom

Not only must you look beyond what customers ask for, you need to
ignore a big part of what your competition does. Chances are good
that they are probably following conventional wisdom. If you
follow them, you will not, by definition, be innovating or
differentiating.

As stated before, figure out what tasks your customers are trying to
do. Those are the problems your product should address. In the case
of Graffiti writing, the designers saw that natural recognition was a
means rather than an end. What customers really needed was some
kind of writing method that works well. Similarly, the designers
concluded that the built-in applications had to be practical. If
handheld applications had all the bells and whistles but were not
practical, those “power” features would have no real value.

When you ignore convention, you must be ready to stand your
ground. If your design is good and you have tested it with users to
confirm that it works (as described under “Design Validation” on
page 27), then don’t let other people talk you out of it. Listen to
qualified critics who make comments based on thoughtful
observation. If they don’t understand your design, try to learn why
not and eliminate any sources of confusion. But watch out for
people who are uncomfortable simply because your idea does not
conform to conventional design. These people will confuse you and
pull you back to where they are—conventionality.

Stay your course. Success paves the way for more innovation. The
success of the initial Palm Powered devices gave birth to the Palm
OS platform. In time, third-party developers came out with their
own versions of the built-in software that made different ease-of-use
trade-offs. By staying the course in the first place, PalmSource
ultimately brought users a variety of solutions to their personal
information management needs. Moreover, PalmSource enabled the
creation of thousands of third-party applications, some of which do
things we never even thought of!

The 80/20 Rule
You can forestall feature overload by applying the 80/20 rule: Focus
on what users do 80 percent of the time and try to ignore the other
20 percent. Accommodate what most people need to do, but don’t
add complexity just to address fringe cases. Keep in mind that you

The Path to Enlightenment
Design Practices

18 Zen of Palm

and most of your coworkers are not “most people.” You use
technology intensively, so you probably shouldn’t apply the 80/20
rule to your own activities. Apply the rule to what typical users do.

You’ll find that this approach will sometimes lead to solutions that
are unusual or unorthodox. For example, using the Address Book
button to beam a business card is architecturally odd. Palm OS
software designers, however, applied the 80/20 rule and decided
that one of the most important uses of infrared (IR) would be to
send business cards. Then they came up with a way to make it
happen just by pressing the Address Book button for two seconds.

Another example of the 80/20 rule: Pressing the Date Book button
takes you to the current date. Why? Because 80 percent of the time,
users want to see what they have scheduled for today. Additionally,
the standard Date Book application has repeating events but doesn’t
cover every possible case of repetition. Thus, it accommodates what
most people want to do but refuses to add complexity merely to
include fringe cases. For example, to schedule an appointment for
the second and fourth Thursday of every month, you must enter it
twice in the Date Book (one repeating on the second Thursday and
the other repeating on the fourth Thursday).

Focus on what
users do 80

percent of the
time

Your challenge is to take a hard look at the problems you are
solving. Ask yourself what it is that people want to do with your
application and how often. What do they want to do occasionally?
What do they want to do every week? Every day? Several times a
day? Employ the 80/20 rule.

Scaling the Problems
As you specify the problems that your Palm OS application is going
to solve, it’s important to scale them to the handheld world. In the
PC world, designing a robust architecture that supports all
conceivable cases is desirable and sometimes required. In the
handheld world, you do not have the luxury of covering everything.
Overly broad solutions actually shortchange the user! You need to
design a handheld product as you would prepare for a backpacking
trip, not for a car camping trip. If you’re driving somewhere, you
toss in extra shoes, canned food, beverages, whatever you please.
You don’t really think much about it. If you’re backpacking,

The Path to Enlightenment
Design Practices

Zen of Palm 19

however, every ounce matters and every item you bring needs to
really deserve to be there. For example, a six-pack of soda might be
tasty, but would you really want to lug it around for five days?

Whether you’re backpacking or designing a Palm OS product, you
don’t pare down from 100 percent. You start at zero and work your
way up. Start with nothing, and add only essentials—one by one.

The Memo Pad is a good example of scaling problems for a
handheld. It’s designed for jotting down notes. It wasn’t designed
for creating lengthy, formatted documents, which is the kind of
word processing people do on a PC. It had only one font at a time,
only one text style, and no paragraph formatting ruler. The Memo
Pad was designed for a small screen, limited memory, and the
difficulty of text input on the go. Text processing on a Palm Powered
handheld has come a long way since 1996—thanks in part to our
third-party developers. The Memo Pad, however, still serves its
original purpose: inputting short notes for future reference.

Decompose a
large PC

application into
multiple

handheld
applications.

Sometimes you may want to decompose a large PC application into
two or more smaller applications for the handheld. For instance, a
large PC word processing application can accommodate short notes
or longer business letters. On a handheld, however, the customer is
better off using several smaller, more focused applications. For
instance, she should use the Memo Pad for jotting down brief
information for handy reference. On the other hand, to write
business letters, she should download one of the many fine word
processing applications produced by members of the Palm
Economy.

Sharing the Work
Your handheld application doesn’t have to solve all the problems
itself. You can assume most handheld users have PCs as well, and
you can let the PC do your handheld application’s heavy work. This
means you can scale down your handheld application by shifting
some of the work to a companion PC application. If you were
designing a car, you wouldn’t have to put a large refrigerator in the
car. You could safely assume that the owner has a refrigerator at
home. If you needed to be sure that the owner can keep the

The Path to Enlightenment
Design Practices

20 Zen of Palm

occasional beverage cool on a long drive, you might just throw in an
small ice chest.

Let a
companion PC
application do

the heavy work

Work sharing is exactly what the PalmSource Expense application
does. This application is designed for quickly jotting down expenses
such as “Taxicab $6”. The Expense application does not print
expense reports, do exchange-rate conversion calculations, or even
show a running total of expenses. It purposely has a very simple
interface so the user can quickly note an expense. After
synchronizing with a PC, the user can get a running total, currency
conversions, printed reports, and so forth from a PC spreadsheet or
database application. The point is that your handheld application
does not have to take the place of an entire PC application. You can
design your handheld application as a satellite to a desktop
application. Think of a handheld as a device for accessing and
managing content, and think of a PC as a device for data-processing
and creation of large amounts of content.

Solutions—not Features
After identifying the problems that your product is going to deal
with, you need to find solutions. There are two approaches. The
wrong approach is to list a bunch of features that an application like
yours should have and then try to implement as many as possible.
For example, how can we make the PC feature set work on the Palm
Powered handheld? Avoid questions like that.

The right approach is to figure out how your application can
accomplish precisely what the user needs to do. Look for solutions
that are fast and easy to use. Try to delight the user.

Minimize
clutter

One way to make your application easy to use is to minimize clutter.
To some extent, this will be a natural outcome of reducing your
application’s feature set. Beyond that, look for ways to organize
your screen layouts so that they aren’t overloaded with objects.
With fewer objects on the screen, users can more easily focus on the
remaining objects. Naturally, you’ll want those remaining objects to
represent important features. Thus, minimizing clutter makes
important features more accessible and ultimately makes the
application easier to understand and use.

The Path to Enlightenment
Design Practices

Zen of Palm 21

Reduce the
step count for

common tasks

You can also make your application faster and easier to use by
minimizing the number of steps for frequently used features. While
keeping in mind the goal of minimizing clutter, try to organize your
screen layouts so that the more commonly used a feature is, the
fewer actions are required to access it. If you can make the most
common functions accessible by just one touch or one tap, people
will love your application.

Conceal risky
functions

There are some functions that you might not want to make easily
accessible even though they are commonly used. For example, users
must perform several steps to delete records in the Address Book
and Date Book applications (unless they use a shortcut stroke). This
is an intentional safeguard against accidental deletions. Don’t make
a function too easily accessible if it can destroy data or is dangerous
in some other way.

Note that although the Delete function is hidden, the New function
is as easy to access as possible. Symmetry is not always desirable in
a user interface. At work, you probably have a stapler and a staple
remover. They perform symmetrical functions, yet it makes perfect
sense to keep the stapler on your desk and the staple remover in a
drawer.

Include power
features

discreetly

In addition, you may want to include “power” features for
advanced users of your product. There’s nothing wrong with power
features as long as they don’t get in the way and trip up novice
users. For example, if you want to create a new event in the
standard Date Book application, you can just start to write the time
or the title of the event. Just write a 3 to create an event that starts at
3:00. That method is faster than tapping New, and it’s there for users
who want to learn about it. Yet it adds no clutter to the user interface
and will never get in the way of the novice user. What’s great about
power features is that they don’t have to be obvious. They can
require a shortcut stroke or some other “secret handshake.” Power
users by definition are willing to dig to find out all the tricks.

Intuitive
Another important part of making your application easy to use is
making it easy for people to discover its features and figure out how
to utilize them. To make your application feel intuitive, keep the

The Path to Enlightenment
Design Practices

22 Zen of Palm

user interface consistent with built-in applications. Adhere to the
Palm OS user interface guidelines. A consistent user interface is a
familiar user interface.

An application that feels familiar feels easy to use even on first
experience. When users first look at your application, they will
explore it, and they will try to figure it out. Every little thing that
they have to think through is like a little speed bump. Each time a
user encounters something unusual in your application’s user
interface, something that works differently from other applications,
the user must take a couple of extra seconds to figure it out. (Or the
user might not figure it out at all.) These disturbances have a
negative cumulative effect.

Stick to the
user interface

guidelines

Your application gets a positive cumulative effect if it sticks to the
user interface guidelines. It leverages everything the user has
learned about the standard user interface from other applications.

For example, the user recognizes a command button and
immediately knows how it works. The user taps the button, and it
behaves exactly as expected. This button adds nothing to your
application’s learning curve.

If you can limit the number of speed bumps, users will get through
your application and think, Wow! That was really easy to figure out.
They just picked it up, started playing around and got it to work.

Easy to Remember
Even more important than making procedures intuitive is making
them easy to remember. A user who can’t remember the procedure
for accomplishing a particular task must repeatedly rediscover how
to accomplish the same task.

Usually a procedure that’s easy to remember is one that’s also easy
to figure out in the first place, but not always. Certain procedures
may not be obvious to some users, especially novices, who might
have to be taught the more obscure techniques. Nevertheless, these
techniques can still be easy to remember. For instance, it’s not
obvious that you can beam a business card by holding down the
Address Book button, but the technique is easy to remember. As one
person said in a Palm OS user test, “It’s really intuitive, once you

The Path to Enlightenment
Design Practices

Zen of Palm 23

figure it out.” If you can’t make a procedure universally intuitive,
make it memorable.

Example: Train Catcher
Let’s take a look at an example application that illustrates some of
the design principles and practices we’ve discussed. This is the
imaginary Train Catcher application, which you might find useful if
you were traveling by subway in Japan. When you are transferring
trains and there are six different trains leaving from four tracks,
Train Catcher helps you figure out which train to take. Figure 1.5
shows a first design for this application.

Figure 1.5 Example application design, first pass

At the top of the screen, three pop-up lists let you specify which
train line you want, your starting point, and your destination.
Below that you specify the time of the earliest train you want to
take; this would be the current time by default. The bottom half of
the screen presents some options: you can select the weekday
schedule or the weekend schedule, and you can set how the list of
trains will be sorted. To use this application, you would configure
all these settings, tap a button, and the application would generate a
list of all the trains you could take.

This first pass at the design is very busy. There’s a lot of stuff on the
screen, and your eye wanders all over the place. You notice the icons
at the bottom of the screen, but you don’t really know what they do.
In fact, some time after the designer of this example application put

The Path to Enlightenment
Design Practices

24 Zen of Palm

those icons there, even he wasn’t sure what they were intended to
represent.

It’s not so unusual for the designers of an application to forget why
they included some features or how a feature is supposed to work.
When that happens to you, it should raise a huge red flag. If you’re
knee-deep in the design and you can’t remember how it works, then
you certainly can’t expect an average user to have an intuitive feel
for it or figure it out.

This design needs a second pass to clean it up a little. Let’s do a
layout that’s more like the standard Palm OS layouts, as shown in
Figure 1.6.

Figure 1.6 Example application design, second pass

Let’s line up the three pop-ups at the top of the screen. Let’s add a
couple more words to clarify the purpose of the time field. We can
eliminate the weekday-weekend indicator. Generally, the user will
be searching for trains that are running today. Your application can
easily find out what day it is, and show the appropriate weekday or
weekend information.

For customization purposes, we might put the weekday-weekend
setting on a preferences screen. The sorting option can definitely
move to the preferences screen because it probably will not change
very often. Since we couldn’t remember what the icons do, let’s get
rid of them. One of the icons probably started the search for trains,
which is the application’s most important function, so let’s make a
text button for that function.

The Path to Enlightenment
Design Practices

Zen of Palm 25

We now have room to add a button for another useful function that
shows when the last train leaves. In a city where some trains don’t
run 24 hours a day, this button tells you how late you can stay
without missing the last train and having to take a taxi home. This
new button does not clutter the layout, because we removed
nonessential objects. This last-train function is exactly the type of
feature you will add if you are focused on solving the user’s
problems, as opposed to padding the design with incidental
features such as a weekday-weekend indicator. Users will say,
“Great! That’s just what I wanted to do.”

This second pass could still be improved. For example, the field
label “Display trains after” could be rewritten less ambiguously. It
might say: “Show trains that leave after:” Your label would be a
little longer, but also clearer. And you provided the extra space
required by simplifying the original user interface.

Application design is an iterative process, like editing written
material. In the first pass you just throw everything on the page.
Then you hone it down. You show the second pass to people and get
feedback, and you realize it’s still not good enough. Then you get
user feedback on several more passes. Iterative design is what really
makes a great application, rather than just giving it a shot and
calling it a day.

Taking the editing analogy one step further, designing a handheld
application is more like editing a poem than editing a novel. In a
novel, you’re not very concerned with size. In a poem, every single
word and every punctuation mark has its place. A 17-syllable Haiku
poem is more exacting to write than a 600-page novel.

Solution to Riddle #2
Now we’re ready to answer the second riddle. We know a mountain
of features won’t fit into a teacup. We want the optimal balance of
features and user experience, and know one way to achieve this is
through pragmatic innovation. That is, identify the problems, find
the simplest solution to each problem, and get rid of everything else.

The Path to Enlightenment
Design Practices

26 Zen of Palm

Q: How do you fit a mountain in a tea cup?

A: Extract the diamonds and leave the rest. (Do you really want
the rocks and dirt?)

Make a product that does what people need, not necessarily what
they ask for right off the bat. Make it useful and elegant: minimize
clutter, reduce the step count for common tasks, conceal risky
functions, and include power features discreetly.

Scale your product for the handheld world. Let a companion PC
application do the heavy work. Use the 80/20 rule to hone in on the
most frequently used features and jettison the rest. That takes a leap
of faith, because it’s possible to get rid of the wrong stuff. You might
end up stripping out a lot of features and finding that some of them
were essential after all. It’s challenging to figure out just which
features are important, keep those, and leave everything else out.
But if you do that, you’ll create a far more compelling application.

©
 2000 JO

H
N

 G
R

IM
E

S
 john@

grim
escartoons.com

The Path to Enlightenment
Design Validation

Zen of Palm 27

Design Validation
The third riddle along our path to enlightenment is concerned with
finding out the quality of your design in real-world circumstances:

Riddle #3 Q: How does the blacksmith learn to make the perfect
horseshoe?

Hint: Humility lights the path to knowledge.

This riddle has to do with validating the design of your product’s
user interface. Every book ever written on the subject of user
interface design stresses the importance of user testing. This riddle,
however, suggests that certain approaches to user testing are in
keeping with the Zen of Palm—approaches taken by PalmSource,
Inc. and its licensees in designing handhelds and handheld
applications.

©
 2000 JO

H
N

 G
R

IM
E

S
 john@

grim
escartoons.com

The Path to Enlightenment
Design Validation

28 Zen of Palm

Validating Design Quality
If you’re skeptical that user interface testing is really necessary,
think about how different your customers are from you and the
other designers and engineers you work with. Being part of the
computer world, you all naturally use computers in the course of
your jobs. You aren’t threatened by computers, whether of the
desktop or handheld variety. You enjoy working with them and
understand them. Your familiarity with computers makes it difficult
to relate to people from nontechnical worlds. But computers,
including handhelds, can be totally alien to somebody whose
primary job is to know real estate or to manage a pet store.
Nontechnical people might not feel comfortable with computers
and might not like using them.

To get a feel for what it’s like being uncomfortable with computers,
try to imagine a world where a new, more efficient means of writing
computer programs requires that you know French literature or
philosophy. Imagine that you’re trying to compile your application
and you get an error message that says, “Epiphenomenal event.
Retry using Cartesian Dualism.” You think, I’m an engineer, not a
philosopher! You’d resist using this compiler in the future.

Basic User Testing
Because so many people are uncomfortable with computers and
computer products, it’s vital that you get their feedback in user
testing. It doesn’t have to be expensive. It doesn’t have to be
particularly difficult. You can get useful results from simple user
testing even if you’re an experienced designer.

Remember that your emphasis is on actual users rather than
theoretical exhaustiveness. So you should test that your application
is useful in real world situations. Keep in mind the following
criteria:

• Does the application accomplish a complete, if limited, task?

• Can the user figure out what the application does from its
name and, especially, from its user interface?

• Does your user interface imply all sorts of tempting
functionality that is not actually implemented in your

The Path to Enlightenment
Design Validation

Zen of Palm 29

application? (Perhaps a redesign is indicated to avoid user
confusion and disappointment.)

• How long does it take a user to figure out the full task?

• How long does it take the user to remember how to perform
a task that he or she previously figured out?

Let’s explore some ideas for doing simple user testing. The most
important idea is that lots of informal testing is better than a little or
no formal testing. You don’t need to have two-way mirrors and hire
a consulting company. If you’re an individual developer or a small
company, basic testing might be all you can do. If your company has
the resources to do comprehensive testing, then basic testing can be
the first phase of a comprehensive test plan.

Test early Whether simple user testing is all you can do or is part of a larger
plan, start testing early. Don’t make the mistake of waiting until
your application is in alpha to begin testing the user interface
design. If you think that you should first get something running and
then start user testing, you may find yourself trapped. At that point
you’ve invested a lot of work into getting something running, only
to discover in user testing that the design is all wrong. Are you
going to scrap the engineering work that’s already done? It’s
probably too late to do that, so you have to compromise the design.

Test with
simulations

To get an early start, begin user testing of your design with
simulated screen shots made with pencil and index cards, HTML
pages, Macromedia Director, Adobe Illustrator, Satellite Forms, NS
Basic, Visual C++, Metrowerks Constructor, or whatever you like.
Don’t wait for alpha.

Test selectively Your early tests don’t have to cover your entire user interface. You
can test selectively. Start by identifying the specific parts of your
user interface that you must try to get perfect, and test those. In
addition, test any parts of your user interface that you have doubts
about, even if those parts are not essential. These are the approaches
that designers took to test the user interface of the original Palm
Powered handheld when Palm, Inc. was a small company. An
individual developer or small company that can’t test an entire user
interface can selectively test the most important parts.

The Path to Enlightenment
Design Validation

30 Zen of Palm

Of course, you should not stop with informal, selective user testing
if you can formally test the entire user interface. Formal testing with
full documentation gives you data on which to base your
convictions, leaps of faith, and uses of the 80/20 rule.

Test outsiders,
and be

methodical

Your test subjects can be anyone who isn’t knee-deep in the details
of the product—your receptionist, someone’s brother-in-law, even
people off the street. Bring them in, sit them down, and describe a
task you’d like them to perform with your application. Have them
try to accomplish the task, and ask them to talk about what they’re
doing as they proceed. You simply watch and listen. See where
people get into trouble.

While you watch, take notes. Orderly documentation will help you
accurately evaluate your tests and correctly determine what
changes to make.

Try to be consistent in how you set up and carry out the same test
with all testers. Give each person the same description of each test.
Ask the same questions. Keep a record of each tester’s responses
and actions. By setting up and going through each test the same
way with everyone, you make your results more meaningful.

Test iteratively As you find trouble spots in your design, tweak it to eliminate or
reduce them. Then test some more. Test, tweak, repeat. Refine your
design before you get too far along in coding. Iterative user testing
was a critical factor for the success of the original Palm Powered
handheld. The software designers actually did several prototypes of
the entire user interface in HyperCard before writing code.

What You Find
When you test your user interface design, you’ll be surprised at the
parts of your design that users can’t figure out. These parts of the
design are incredibly obvious to you because you see them in the
context of the whole application. You see how all the details fit into
the big picture. Users look at individual features or procedures
without that context and simply have no idea what’s going on.

You need to know if users can’t figure out where they’re supposed
to touch the screen or what to enter. For example, PalmSource, Inc.’s
Network HotSync® software, which enables network and remote

The Path to Enlightenment
Design Validation

Zen of Palm 31

synchronization, has a screen that says “Enter your user ID and
password.” How much more obvious could that possibly be? Well,
this stumped one tester, who wanted to know whether User ID
meant his handheld user name, his network user ID, or his e-mail
user ID. The designers knew which user ID to enter because they
knew the context, but the input request was ambiguous to the user.

Use plain
language

User testing also helps flush out terminology that need to be
replaced with plain language. We get so used to our own jargon that
we forget. To avoid using jargon, think what you would say to a
person with little computer experience. For instance, if you’re
explaining how to use the Find function, you wouldn’t say, “Enter
your search string into the text field of the Find modal dialog.” You
would say, “Write the word you’re looking for on the line.”

To clean up jargon, ambiguities, and other language problems, have
a documentation writer, copy editor, or at least a literate friend go
through your application’s dialogs. It’s a good investment of time.

Keep the
course of

action clear

User testing will reveal still more design flaws, including the “left
turn at Albuquerque” syndrome. This refers to the old Bugs Bunny
cartoons in which you’d see Bugs digging a long tunnel toward
Miami Beach, but he would pop his head up in some strange place
and say, “I knew I should have taken that left turn at Albuquerque.”
Similarly, a user who is trying to figure out how to accomplish a task
will start building a mental model of your application. (This is the
digging a long tunnel part.) If the user takes a step in the wrong
direction early on and heads off in the wrong direction, building a
false model on top of that misstep, then eventually the user gets
very confused.

When people are experimenting with your application, trying to
figure out how it works, and are faced with several options or
courses of action, they may use a process of elimination to decide
which alternative to choose. First they rule out the least likely
choice, then the next least likely choice, and so forth until only one
remains. It’s the same method people use to take multiple-choice
tests. This approach works better when your application design is
simple and uncluttered. Too many choices make it hard to figure out
which is the right one. Subsequently the user will also have trouble
remembering which of those many choices was correct. If there are

The Path to Enlightenment
Design Validation

32 Zen of Palm

only a couple of choices, the user can more easily figure out and
remember which is right.

Solution to Riddle #3
Now we’re ready to answer the third riddle.

Q: How does the blacksmith learn to make the perfect
horseshoe?

A: Straight from the horse’s mouth.

The expression “straight from the horse’s mouth” derives from the
ancient art of horse-dealing. A prospective buyer can verify
suspicious claims about a horse’s youth by looking into the
creature’s mouth and checking its teeth.

In the case of our riddle, “straight from the horse’s mouth” has a
double significance. On the one hand, you should listen to your
users. Like the talkative horse in the cartoon, they know a lot about
their own needs, and you need to learn from them. On the other
hand, you should also look and learn for yourself. Observe the

©
 2000 JO

H
N

 G
R

IM
E

S
 john@

grim
escartoons.com

The Path to Enlightenment
Design Improvements

Zen of Palm 33

horse. See how he walks. Observe different surfaces. What gives
him trouble? Uneven surfaces? Pavement? What could help most?
Likewise, your users are well worth observing. How do they
approach your application? How do your innovations fit their
expectations and computer-using habits?

A blacksmith can improve his horseshoes by trying them on horses,
observing the fit, and reworking them for better fit. You can
improve your product by testing its user interface design, observing
where people have trouble with it, and revising the design to
eliminate the trouble. This may seem obvious, but it’s tough to take
the necessary time when you’re rushing to get the product done.

Start testing early with simulations. Try to test outsiders and be
methodical. If you can’t test everything, test the critical parts and
the parts you’re not confident about. Keep testing as your product
evolves. The effort you put into user testing will pay you back
several times over by increasing your product’s long-term usability,
reducing the cost of customer support, and delighting your
customers.

Design Improvements
The final riddle concerns improving your designs.

Riddle #4 Q: How do you improve perfection?

This riddle has no picture. Perfection is an ideal, so you’ll have to
imagine it in your own head.

Hint: What is a “more perfect union?”

We have now entered the advanced levels of enlightenment. Being
easy-to-learn and easy-to-use is great, but your product must
continue to improve in order to keep ahead of its competition. This
presents a paradox. If less is more, then in theory, once your product
has reached a certain level of elegant focus, once it has nailed that
sweet spot, you’re done. No more product advancement.

The Path to Enlightenment
Design Improvements

34 Zen of Palm

Stretching the Sweet Spot
So how do you keep your product moving without moving it out of
the sweet spot? Try stretching the sweet spot, as shown in Figure
1.7.

Figure 1.7 How to add features over time

Pragmatic innovation lets you shift the curve and make the sweet
spot larger over time. One example of this is infrared (IR). The
original Palm Pilot models did not have IR because it was
technically very difficult to incorporate in a way that was truly easy
to use and didn’t drain the batteries rapidly. The user benefits of IR
didn’t justify the expense of including it. Later, PalmSource
engineers invested a great deal of effort to integrate IR elegantly into
the Palm OS with a user interface that delighted customers.
PalmSource shifted the curve and made the sweet spot larger.

Here’s another example of stretching the sweet spot over time.
When people asked for a handheld web browser, PalmSource, Inc.
product designers realized that what users really needed was to get
information from the Internet. PalmSource’s initial solution to this
problem, web clipping, was another pragmatic innovation that
added features without sacrificing user experience. Rather than
trying to simulate the experience of using a web browser, web
clippings were designed to provide information from the Internet in
amounts that a handheld can manage. This lightweight format was
ideal for the narrow pipeline of wireless connections. But this
balancing act is not meant to last forever. As wireless technology
improves, PalmSource’s web browser becomes more sophisticated,
displaying as much of the web page as the practicalities of the
moment permit. Meanwhile, for handhelds connected to the

More Features

B
et

te
r

U
se

r
E

xp
er

ie
nc

e

PC-like

Palm OS Products

Sweet Spot

Handheld
Products

The Path to Enlightenment
Design Improvements

Zen of Palm 35

Internet via a wireline modem, there are third-party web browsers
available. In short, the Palm Economy offers a balance of solutions
that will re-balance as the surrounding technology changes.

Add features
creatively

Note that it’s not enough merely to add a feature. The feature must
be added creatively and elegantly or the user experience
deteriorates and the product moves out of the sweet spot. Products
that compete with Palm OS handhelds aren’t in the sweet spot even
though they have many more features, because too many features
lead to a complex user interface. Palm OS products can actually
match or surpass the competition’s functionality and stay in the
sweet spot.

Discovering New Features
You can come up with new ways to stretch the sweet spot without
spending lots of money on advanced research and development.
There is plenty of opportunity in newer technologies that are
already in the market but are badly implemented and too expensive
at the present time. You just need to track these technologies and
understand their limitations.

Study other
products

If you see a competitive product that has a poorly implemented
feature, buy the product and try it out. Carry it around and try to
determine if the feature has potential and what is preventing it from
being a great feature now.

While evaluating a potential new feature, decide whether either or
both of the following conditions will enable you to add it to your
product:

• The feature uses a technology that has evolved to become
less demanding over time. Technologies that were too bulky,
too expensive, or too power hungry to fit your sweet spot last
year may be less so this year.

• You have a pragmatic and innovative idea for using the new
feature in a way that no one has done before. Pragmatic
innovation is the key to making a cumbersome technology
elegant, thereby keeping it in the ease-of-use sweet spot.

Stretching the sweet spot to improve your handheld product is an
advanced design technique. As you might expect, this advanced

The Path to Enlightenment
Design Improvements

36 Zen of Palm

technique is more difficult to put into practice than the basic design
methods that you already used to get your product into the sweet
spot in the first place. Once you let go of PC thinking, it’s much
easier to apply the 80/20 rule and keep only features that users
really need than it is to find new features and make them fit
elegantly in the sweet spot. In handheld product design as in other
skills, gain experience with basic methods before trying advanced
techniques.

Solution to Riddle #4
Now it is time to answer the fourth riddle.

Q: How do you improve perfection?

A: Are you kidding? Perfection is a balancing act. Change the
environment, and you have to re-adjust the balance.

In technology, perfection is strictly for the moment. Your “perfect”
solution balances available technologies, costs, market forces, and
user expectations. Whenever the surrounding forces shift, your
balancing act needs to be re-balanced. Put another way:
“perfection” is dynamic, not static.

The founders of the United States government understood this
paradox, as reflected in the famous phrase from the preamble of the
Constitution: “to form a more perfect union.” High school English
teachers often insist that the phrase should say: “to form a more
nearly perfect union.” Something perfect cannot, by definition, be
made better.

Now, the writers of the Constitution understood the rules of English
grammar, but they also understood a deeper psychological truth:
There are stages along an evolutionary development where the
balance appears perfect. As conditions change, the “perfection” has
to change too. In the late 18th century, the fact that 13 bickering
American states could form any union was a miracle. A few years
later, the U.S. Constitution sought to improve on that.

Improvements in the Palm Powered world follow a similar
“incremental perfection.” Study a problem, innovate within the
current limitations, release your product. Then enjoy the success,
take a deep breath, and start the cycle all over again.

The Path to Enlightenment
Design Improvements

Zen of Palm 37

Earlier in this booklet, we gave you a couple of examples of how a
particular solution metamorphosed over time in response to
external changes. The principles of practical innovation and
incremental perfection underlie both the user input technology
solutions (Graffiti 2, keyboards, etc.) and the web browsers that the
Palm Economy has brought out over the last few years.

The history of
telephone

technology
demonstrates

this dynamism.

While these principles are key to the success of the Palm OS
platform, they are not unique to it. Several successful technologies
have followed the same path. Let’s consider, for instance, a
ubiquitous technology that has been around so long we can easily
overlook its many transformations: the telephone.

When the first telephones came out, a clear problem emerged: How
does the caller contact the desired party. Each generation of
telephone technology has answered this question differently,
according to the resources and user expectations of its time.

In the earliest telephone networks, callers spoke directly to a human
telephone operator and asked for their party by name. This quickly
became impractical, so each telephone was assigned a number.
Users were ready for this new paradigm: telephones were identified
by numbers just as buildings were. In the next generation,
automatic dialing entered the picture. Using a dialer, the caller
bypassed the telephone operator altogether. By that point, users
were sophisticated enough to accept a new input technique that
brought the benefits of faster—and anonymous—connection.

Most recently, cellular phones have altered the experience again: the
user views a list of names, selects one, and the phone dials the
number automatically. In a sense, telephone technology has now
circled back to its origins. Once again, focus is on the person to
whom you wish to speak, not on the number.

And in the not-too-distant future, you can imagine each person
receiving a universally unique communication number (at birth?).
Associated with a person rather than a location, the number makes
a person reachable on virtually any telephone device. The telephone
number becomes a permanent and unique identifier and would
probably be concealed behind the person’s name. (We might also
hope for appropriate call blocks and filters.)

The Path to Enlightenment
Summary: The Zen Approach

38 Zen of Palm

At PalmSource we see it like this: if a technology as venerable as the
telephone has to continually transform itself, no company or
industry can afford to sit still technologically.

The same
dynamism is at

work in the
Palm Economy.

The Palm Economy—PalmSource, Inc., our licensees, and third-
party developers—thrives on just such a dynamic balance. To meet
our customer’s needs, we offer today’s best. Almost immediately, an
improvement becomes possible, and that improvement is brought
to market, as well. The Palm Economy is smarter than any one
company—or any two or three companies, for that matter. It
leverages the intelligence, determination, and ingenuity of several
of the industry’s smartest big players, as well as the intelligence,
determination, and ingenuity of thousands of the industry’s smartest
small players!

Summary: The Zen Approach
Before we go, let’s review a minute. To design great Palm OS
products you must set aside the instincts that you may have learned
in the PC world. Avoid the siren call of “features for features’ sake.”
It will lead you down the path of suffering and small market share.
Instead, focus on the user’s experience with your product.
Convenience and usability are power.

Most importantly, focus on the inner tranquility of the customer. Do
you swear at your computer? (If not, you must know plenty of
people who do.) Machine hangs. “*&#*#!!!” Lost data. “*@#$(@#!!”
Network down. “&#@^$*#?!” Have you ever noticed you don’t feel
that way with Palm OS products? Want to see your schedule? Press
a button and there it is. You’re in control. You don’t wait. You don’t
get confused or frustrated. It’s all very elegant and pleasing.

You must prevent your products from becoming complex and
frustrating. Yet you must continue to innovate to differentiate your
product from the competition. Add more, but only if you sweat the
details, focus on solutions, and keep it easy-to-use.

Remember that your goal is not to satisfy some marketing team’s
check list of features. Your goal is a creative and challenging one.
It is to serve your customers while preserving their inner
tranquility—the Zen of Palm.

	Zen of Palm
	Table of Contents
	Introduction
	Additional Resources

	The Path to Enlightenment
	Design Philosophies
	The Essence of PCs
	The Essence of Handhelds
	Inverse Usage Patterns
	Different Design Approaches
	Solution to Riddle #1

	Design Practices
	A Balance of Features
	Nirvana: The Sweet Spot
	Pragmatic Innovation
	Determining the Need
	The 80/20 Rule
	Scaling the Problems
	Sharing the Work
	Solutions—not Features
	Intuitive
	Easy to Remember
	Example: Train Catcher
	Solution to Riddle #2

	Design Validation
	Validating Design Quality
	Basic User Testing
	What You Find
	Solution to Riddle #3

	Design Improvements
	Stretching the Sweet Spot
	Discovering New Features
	Solution to Riddle #4

	Summary: The Zen Approach

